DEPARTMENTS |JOIN US|中文
search
Research

A new set of formulas hasten the thermoelectric system design

Sep 25, 2020

Developments in thermoelectric energy  harvesting techniques have tended to focus on the materials themselves.  Many of those developments are centered on simplistic assumptions of  the materials or determining thermal exchanges between different parts  of the devices. Very few studies have thought to assess those  assumptions to improve the efficiency of devices or the fundamentals  behind thermoelectric system-level optimization.

With that in mind, Associate Professor Weishu Liu (Materials Science and Engineering) has led his research team to make vital progress in thermoelectric energy conversion design theory. Their paper, titled “System efficiency and power: the bridge between the device and system of a thermoelectric power generator,” was published in the high-impact academic journal, Energy & Environmental Science. The research team was aiming to form a bridge between thermoelectric materials, system design, and devices.

Figure 1 Typical waste heat utilization  thermoelectric system. (a) System schematic diagram; (b) System thermal  resistance network

Significant efforts have been put into understanding thermoelectric  conversion, the process of converting heat energy into electrical  energy, and vice versa. There are numerous promising applications for  this technology. The research in this field is spread between the  materials, the devices, and systems design. The majority of the research  has focused on the materials. However, further research is needed into  the devices and system design to realize the commercial application  thermoelectric conversion technology.

Research into devices has not significantly changed since the 1950s.  It is based on the same theoretical framework designed by Soviet Union  scientist Ioffe of that era. The existing formulae also lack the  flexibility to deal with new and more modern materials. For a real  application scenario, it is needed to include the effect of the thermal  resistance among the heat source, device, and heat sink. There is a need  to design calculative methods that show researchers how their variables  affect different aspects of their design and devices.

Figure 2 Theoretical framework of thermoelectric system design for terminal application scenarios

To deal with this problem, the research team took a new approach to  calculation, rather conventional numerical calculation route. They  sought to develop a series of formulae that would allow scholars to  input and change variables while seeing how those changes impact other  areas of their calculations. Based on the fundamental control equations  and actual thermal boundary conditions, the researchers deduced the  first set of explicit theoretical calculation formulas for the energy  conversion efficiency and output power of the thermoelectric system.

Their white-box approach to thermoelectric energy conversion formulas  created a bridge between connecting material scientists and thermal  engineers. It offers researchers around the world with a future-forward  process to evaluate the performance of their designs with a new  fundamental basis.

Postdoctoral researcher Kang Zhu is the first author of the paper. Dr. Weishu Liu is the corresponding author. SUSTech is the corresponding unit.

This work received support from the SUSTech-MIT Mechanical  Engineering Education and Research Center, the Guangchuang Team Project,  the Shenzhen Science and Technology Foundation, and the Tencent Public  Welfare Foundation “Science Exploration Award” project.


The original link: https://newshub.sustech.edu.cn/html/202009/27983.html